Memo

To: Park City Public Works	From:	Curtis Ball Stantec Consulting Services, Inc.
File:	205303057	Date:

Reference: Alice Claim Storm Drainage Narrative (revised for Gully Plan)

Alice Claim is a proposed nine lot subdivision located in Park City, Utah at the south end of town. The site is accessed by King Road, Sampson Avenue and Ridge Avenue. The site is bounded on the north by residences along King Road and Sampson Avenue, bounded on the east by hillside and Ridge Avenue, on the south by Park City's Woodside water tank site, and on the west by hillside and the extension of King Road, which cuts off the drainage from the hillside further to the west. The terrain is relatively steep, and vegetated with shrubs and grasses, and with a few conifers and aspen trees. A rip-rap channel carries the drainage from Woodside Gulch through the site running from south to north. At the north end of the project, the channel runs into a 36 " pipe culvert which carries the water to the Park City storm drain system.

Because of the relatively small area of the site, the Rational Method was chosen to analyze the storm drainage. Storm Intensity values were taken from NOAA Atlas 14 for Park City, Utah using a 100 year return period. NRCS Watershed Lag methodology was used to determine the time of concentration and select the appropriate intensity. Time of concentration was calculated to be 12 minutes so the 15 minute storm intensity was used. The intensity for a 15 minute, 100 year storm event in this location is 5.04 inches per hour.

A portion of the site will remain undisturbed and the drainage patterns unchanged, draining into the Woodside Gulch drainage channel. Other small undisturbed downhill portions of the site will continue to drain down the hillside as they do now. The whole site contains 8.2 acres, but only the run-off from 7.28 acres will be affected by the proposed improvements. The 7.28 acre area was used for calculating both the pre-development and the post-development run-off values.

Run-off coefficients were chosen based on anticipated future development. A weighted run-off coefficient was determined using approximate roof areas and proposed pavement areas, and assuming natural vegetation on the landscape areas.

We are proposing to intercept the Woodside Gulch channel at the south end of the project and reroute it in 36 " culvert north to lot 9 where it will resume its course in the existing channel until it enters an existing 36 " culvert which empties into the Park City storm drain system. This run-off will pass through the entire site detained.

A total of five sub-basins were identified which are affected by the proposed improvements, and are labeled on the Drainage Plan as Drain Basins 1-5. Because of site constraints only Drain Basin 2 can be captured and detained. Drain Basins 1,3 and 4 are caught in catch basins and added to the Woodside Gulch flow without detention. Drain Basin 5 run-off flows directly onto the north section of the road without detention. In order to compensate for the un-detained flows, the flow from Drain Basin 2 is being "over-detained" such that all of the post-development flows combined do not exceed the pre-development flow of 12.85 cfs. The run-off released from the detention joins the flows in the new 36 " culvert.

April 20, 2016
Park City Public Works
Page 2 of 2

Reference: Alice Claim Storm Drainage Narrative (revised for Gully Plan)

Due to the relatively small flows and the steepness of the on-site storm drain pipes, we propose using 15" pipe for all site storm drainage collector pipes. The 36" culvert carrying the Woodside Gulch flows was sized using HEC-HMS for drainage calculations and Bentley FlowMaster for pipe sizing. The contributing area was 224 acres and the peak discharge was 113.1 cf using a design storm with a 100 year return period and a 24 hour duration.

Stantec Consulting Services, Inc.

Curtis Ball, P.E.
Phone: 801.743.4952
Fax: 801.266.1671
curtis.ball@stantec.com

```
Attachment: Vicinity Map
    Storm Drain Plan
    100 Yr. Storm Drainage Calculations
    Drain Basin 2 Flow and Orifice Sizing Calculations
    NOAA Atlas }14\mathrm{ printouts (precipitation and intensity)
```


ALICE CLAIM SUBDIVISION - PARK CITY, UTAH

ON-SITE RUNOFF / DETENTION 100 YEAR STORM

- 4/20/2016
$\begin{array}{lcl}\text { AREA PRE-DEVELOPMENT (SF) } & 317328 & \text { SF } \\ \text { AREA PRE-DEVELOPMENT (AC) } & = & 7.28\end{array}$

Proposed Development
Runoff Coefficient:

Desc.	Area (A)	Coeff. (C)	CA
Roof	16500	0.95	15675.0
Ravement	13521	0.9	12168.9
Pandscape (andeep slope, heavy soil)	287307	0.35	100557.5
Sum $=317328$			128401.35

"C" = $\quad \underline{0.40}$
*Runoff Coefficient (C) from Park City Drainage Design Manual
POST-DEVELOPMENT OUTFALL RATE (Q)=CIA
$\mathrm{Q}=14.86 \mathrm{cfs}$
$\mathrm{C}=\quad 0.40$ (Weighted post-dev. C based on Park City Drainage Design Manual)
WEIGHTED 'C' (post-dev) $=\quad 0.40$
ALLOWABLE OUTFALL RATE Qall (CFS)
POST-DEVELOPMENT FLOW (CFS)
Q difference (Post - Pre) (cfs) =

$\begin{array}{ll}\mathrm{I}= & 5.04 \mathrm{in} / \mathrm{hr}(\\ \mathrm{A}= & 7.28 \text { acres }\end{array}$

A	$=$
$\mathrm{Tc}=$	7.28 acres
15 min (select closest $\{1530,60,720$	

Storm Duration (min.)	Rainfall Total (in.)	Storm Runoff (cu.ft.)	Discharge (cu.ft.)	$\begin{aligned} & \text { Storage } \\ & \text { Req'd } \\ & \text { (cu.f.) } \end{aligned}$
${ }^{15}$	1.26	13482	11565	1917
30	1.70	18190	23131	-4941
60	2.10	22470	46262	-23791
360	2.58	27606	277570	-249964
720	3.17	33919	555140	-521221
1440	3.62	38734	1110281	-1071546

Runoff $=$ Total Rainfall \times C
Discharge $=$ Time \times Qall
Storage Factor of Safety $=$
Required Storage $=($ Runoff - Discharge $) /($ Storage Factor of Safety $)$

$$
\frac{2130 \mathrm{cu}}{15930}
$$

Pre-Development

ALLOWABLE OUTFALL RATE (Qall)= CIA

```
Qall =
C= 0.35 (predevelopment coefficient from Park City Drainage Design Manual)
A= }\begin{array}{l}{5.04 in/hr}\\{7.28 acres}
15 acres (sectloses {15,30,60,360,720,1440} minfromc Calc below)
15 min (select closest \(\{15,30,60,360,720,1440\}\) min from Tc Calc below)
```

BASIN	AREA	AREA	HSG	LAND	Lag Time	Tc						
	(acres)	(mi^2)			(min)	(min)	L	Hi-Elev	Lo-Elev	Y	s	CN
1	7.28	0.011	C	MTN.	7	12	(feet)	(feet)	(feet)	(slope\%)	(nches)	

HSG~ HYDROLOGIC SOIL GROUP
TC~ TIME OF CONCENTRATION(HOURS)
L~ HYDRAULIC LENGTH OF WATERSHED (FEET)
$S=1000 /$ RCN -10
Y~ AVERAGE SLOPE OF LAND
S~ MAXIMUM RETENTION IN THE WATERSHED(INCHES)
CN~ SCS CURVE NUMBER (CN = 70 Brush: Fair condition ($50-75 \%$ cover) for HSG C

NOTE: CALCULATED USING THE NRCS WATERSHED LAG METHOD

DRAIN BASIN 2

Note: This spreadsheet estimates the runoff produced by the small "side" basin (Drain Basin 2) that feeds into Woodside Gulch just upstream of the developed area for alice claim. This is the only basin physically detained in the detention gallery.

Intensity and Precipitation Table

	$10-\mathrm{yr}$	$10-\mathrm{yr}$	$100-\mathrm{yr}$	$100-\mathrm{yr}$	$500-\mathrm{yr}$	$500-\mathrm{yr}$
Storm	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall	Rainfall
Duration	Total	Total	Total	Total	Total	Total
(min.)	(in/hr)	(in.)	(in/hr)	(in.)	(in/hr)	(in.)
$\mathbf{1 5}$	2.480	0.62	$\mathbf{5 . 0 4 0}$	$\mathbf{1 . 2 6 0}$	8.160	2.04
30	1.670	0.84	3.400	1.700	5.500	2.75
60	1.030	1.03	2.100	2.100	3.400	3.40
360	0.265	1.69	0.430	2.580	0.638	3.83
720	0.168	2.02	0.264	3.170	0.359	4.31
1440	0.105	2.52	0.151	3.620	0.187	4.48

*From NOAA Atlas 14 (Upper Bound 90\% Confidence Interval)

Rational Method Runoff Estimation: $\mathbf{Q}=\mathbf{C i A}$

Q(peak) $=$	4.26 cfs
$\mathrm{C}=$	0.35 (run-off coefficient from Park City Drainage Design Manual)
$\mathrm{I}=$	$5.040 \mathrm{in} / \mathrm{hr}$ (Intensity From NOAA Atlas 14 upper 90\% confidence interval for Storm Duration = Tc)
$\mathrm{A}=$	2.42 acres
$\mathrm{Tc}=$	

	C	Intensity (in/hr)	Area (Acres)	Q(peak) (cfs)	Pre- Detention Runoff (cu.ft)	Storage Required (cu.ft) 1	Post- Runoff (cu.ft) 2
100-year	0.35	5.040	2.42	4.26	3869	2130	1739

${ }^{1}$ Storage Required is calcuated in the "Detention-Match-Predev-rev.xls" spreadsheet
${ }^{2}$ Post-Detention Runoff Volume $=$ Pre-Detention Runoff - Storage Volume. Post detention-runoff must be >0 cu.ft.

Q difference (Post - Pre) (cfs) = 2.01 (from "Detention-Match-Predev-rev.xls" spreadsheet) Qout, Detention Discharge Rate (cfs) $=\mathbf{2 . 2 5}$ (to be released from detention)

Orifice Size:

Max. Orifice Head (H, ft.)	$=5 \mathrm{ft}$.
Orifice Coefficient $(\mathrm{C})=$	$\mathbf{0 . 6}$
Orifice Diameter (in.) $=$	$\underline{\mathbf{6 . 1 9}}$

Qall $=$ CA $(2 \mathrm{gH})^{\wedge} 0.5 \quad$ Solving for "A"
$\mathbf{A}=\quad 0.2093$ s.f. $=$
30.14 sq. in.
(H is preliminary)

NOAA Atlas 14, Volume 1, Version 5
Location name: Park City, Utah, US*
Latitude: $\mathbf{4 0 . 6 3 6 0 ^ { \circ }}$, Longitude: -111.4982 ${ }^{\circ}$
Elevation: 7407 ft*
source: Google Maps

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland
PF tabular | PF graphical | Maps \& aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ${ }^{1}$										
Duration	Average recurrence interval (years)									
	1	2	5	10	25	50	100	200	500	1000
5-	$\begin{array}{r} 0 \\ (0.11 \end{array}$	0.14	$(0.198-0.263)$	$(0.245$	$(0.314-0.437)$	$(0.374-0.541)$	$0.440-0.667)$	2)	08)	3)
10	(0.	0.2	$(0.302-0.400)$	$(0.372-0.500)$						
		$0.275-0.362$		$(0.4$						
30	(0.2	$(0.370-0.488)$	(0.504-0.668)	$\begin{array}{c\|} \hline \mathbf{0 . 7 1 7} \\ (0.621-0.835) \\ \hline \end{array}$						
60	(0.	(0.458			$\begin{gathered} 1.17 \\ (0.986-1.38) \\ \hline \end{gathered}$					
2-hr	$0.471-0.5$	$(0.584-0.740)$								
3-h										
6-h	(0.766-0.911)	(0.939-1.12)								
12	$\begin{gathered} 1.08 \\ (0.994-1.18) \\ \hline \end{gathered}$	$\begin{gathered} 1.32 \\ (1.22-1.45) \\ \hline \end{gathered}$								
24-hr										
		$\xlongequal{(1.88-2.21)}$								
3-da		$\begin{gathered} 2.29 \\ (2.11-2.49) \\ \hline \end{gathered}$								
4-c	$(1.90-2.24)$	$(2.33-2.76)$	$\begin{gathered} 3.06 \\ (2.82-3.34) \\ \hline \end{gathered}$	$(3.21-3.82)$						
7-	(2.31-2.7	$(2.84-3.40)$	(3.42-4.10)	$(3.90-4.68)$	$\begin{aligned} & (4.55-5.49) \\ & \hline \hline \end{aligned}$					
10-day	$\begin{gathered} 2.89 \\ (2.66-3.16) \\ \hline \end{gathered}$	(3.27-3.89)								
20	(3.53-4.18	$(4.35-5.15$	(5.18-6.12	(5.81-6.88	(6.63-7.86)	$(7.21-8.58)$	(7.77-9.29)	(8.31-10.0)	(8.97-10.9)	$(9.44-11.5)$
30	$(4.34-5.07)$	(5.33-6.23)	(6.30-7.36)	$(7.04-8.26)$	$\begin{gathered} \hline 8.71 \\ (8.00-9.41) \\ \hline \end{gathered}$	$(8.68-10.3)$	(9.35-11.1)	(9.99-11.9)	(10.8-13.0)	(11.3-13.7)
	$\begin{gathered} \hline 5.84 \\ (5.41-6.32) \\ \hline \end{gathered}$	7.16 $(6.62-7.76)$	$\begin{gathered} \hline 8.46 \\ (7.81-9.16) \\ \hline \end{gathered}$	9.47 $(8.73-10.3)$	$\begin{gathered} \hline 10.8 \\ (9.91-11.7) \\ \hline \end{gathered}$	$\begin{gathered} 11.7 \\ (10.7-12.7) \\ \hline \end{gathered}$	(11.6-13.8)	$\begin{gathered} 13.6 \\ (12.3-14.8) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 14.7 \\ (13.3-16.1) \\ \hline \end{array}$	$\begin{array}{c\|} \hline 15.5 \\ (14.0-17.0) \\ \hline \end{array}$
60-d	(6.45-7.52)	$\begin{gathered} 8.56 \\ (7.93-9.25) \\ \hline \end{gathered}$	$\begin{gathered} \hline 10.1 \\ (9.34-10.9) \\ \hline \end{gathered}$	$\begin{gathered} \hline 11.3 \\ (10.4-12.2) \\ \hline \end{gathered}$	$\begin{gathered} \hline 12.7 \\ (11.7-13.8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 13.8 \\ (12.7-14.9 \\ \hline \end{gathered}$	$\begin{gathered} \hline 14.8 \\ (13.6-16.1) \\ \hline \end{gathered}$	$\begin{gathered} \hline 15.8 \\ (14.4-17.1) \\ \hline \end{gathered}$	$\begin{gathered} 17.0 \\ (15.5-18.5) \\ \hline \end{gathered}$	(16.2-19.5)
${ }^{1}$ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.										

NOAA Atlas 14, Volume 1, Version 5
Location name: Park City, Utah, US* Latitude: 40.6360°, Longitude: -111.4982 ${ }^{\circ}$

Elevation: 7407 ft*

* source: Google Maps

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland
PF tabular | PF graphical | Maps \& aerials

PF tabular

PDS-based point precipitation frequency estimates with $\mathbf{9 0 \%}$ confidence intervals (in inches/hour) ${ }^{1}$										
Duration	Average recurrence interval (years)									
	1	2	5	10	25	50	100	200	500	1000
5-	$\begin{gathered} 1.56 \\ (1.38-1.82) \\ \hline \end{gathered}$									(8.52-16.0)
10	$\begin{aligned} & \hline \hline 1.19 \\ & 05-1.39) \\ & \hline \end{aligned}$									
15	$\begin{gathered} \mathbf{0 . 9 8 4} \\ (0.868-1.1 \end{gathered}$	(1.	$\begin{gathered} 1.71 \\ (1.50-1.98) \\ \hline \end{gathered}$							
30	$(0.584-0.772)$	$(0.740-0.976)$	$(1.01-1.34)$							
60	$(0.361-0.477)$	0.45	$(0.62$							
2	$\mid(0.236-0.298)$	0.292	$(0.379-0.484)$	$(0.457-0.593)$				$\begin{gathered} \hline 1.19 \\ (0.918-1.43) \\ \hline \end{gathered}$		
3-hr	$\begin{gathered} \mathbf{0 . 2 0 4} \\ (0.185-0.229 \end{gathered}$	$(0.229-0.282)$	$(0.287-0)$	$(0.341-0.428)$	$0.420-0.54$	$\begin{gathered} \mathbf{0 . 5 7 0} \\ (0.486-0.649) \end{gathered}$	$\begin{gathered} \mathbf{0 . 6 7 7} \\ (0.560-0.783) \end{gathered}$			
6-hr	$(0.128-0.152)$	$(0.157-0.187)$	$\mathbf{0 . 2 0 8}$ $(0.191-0.229)$	$(0.220-0.266)$	$(0.262-0.323)$	$(0.294-0.372)$	$(0.330-0.430)$	$(0.368-0.498)$	$(0.436-0.639)$	$(0.493-0.785)$
12-hr	$(0.083-0.098)$	$(0.101-0.120)$	$(0.122-0.145)$	(0.140-0.167)	$(0.164-0.201)$	$(0.184-0.230)$	$(0.203-0.263)$	$(0.223-0.300)$	$(0.252-0.358)$	
24	$(0.053-0.062)$	$(0.065-0.077)$	$(0.078-0.092)$	$(0.089-0.105)$	$(0.103-0.123)$	$(0.115-0.137)$	$(0.126-0.151)$	$(0.138-0.166)$	$(0.153-0.186)$	
2-day	(0.032-0.037	$(0.039-0.046)$	$(0.047-0.055)$	$(0.054-0.063)$	$(0.062-0.074)$	$(0.069-0.082)$	$(0.076-0.091)$	$(0.083-0.100)$	$(0.091-0.112)$	$(0.098-0.122)$
3-day	$(0.024-0.028)$	$(0.029-0.035)$	$(0.035-0.042)$	$(0.040-0.048)$	$(0.047-0.056)$	$(0.052-0.062)$	$(0.057-0.069)$	(0.063-0.076)	$(0.069-0.086)$	$(0.075-0.093)$
4-day	$(0.020-0.023)$	$(0.024-0.029)$	(0.029-0.035)	$(0.033-0.040)$	$(0.039-0.047)$	(0.044-0.052)	$(0.048-0.058)$	$(0.053-0.064)$	$(0.058-0.073)$	(0.063-0.079)
7	$\begin{array}{\|c} 0.015 \\ (0.014-0.016) \\ \hline \end{array}$	$\begin{array}{\|c\|} \mathbf{0 . 0 1 8} \\ (0.017-0.020) \\ \hline \end{array}$	$(0.020-0.024)$	$(0.023-0.028)$	$(0.027-0.033)$	$\begin{gathered} 0.033 \\ (0.030-0.036) \\ \hline \end{gathered}$	$(0.033-0.040)$	$(0.036-0.044)$	$(0.040-0.050)$	$(0.043-0.055)$
10-day	$(0.011-0.013)$	$(0.014-0.016)$	$(0.016-0.019)$	$(0.018-0.022)$	$(0.021-0.026)$	$(0.023-0.028)$	$(0.025-0.031)$	$(0.028-0.034)$	$(0.030-0.037)$	$(0.032-0.040)$
2	$\begin{array}{\|c\|c} 0.008 \\ (0.007-0.009) \\ \hline \end{array}$	$(0.009-0.011)$	$(0.011-0.013)$	$(0.012-0.014)$	$(0.014-0.016)$	$(0.015-0.018)$	$(0.016-0.019)$	$(0.017-0.021)$	$(0.019-0.023)$	$(0.020-0.024)$
30	$(0.006-0.007)$	$)_{(0.007-0.009)}^{0.008}$	$\begin{gathered} 0.009 \\ (0.009-0.010) \\ \hline \end{gathered}$	$\begin{gathered} 0.011 \\ (0.010-0.011) \\ \hline \end{gathered}$	$\begin{gathered} 0.012 \\ (0.011-0.013) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 0 1 3} \\ (0.012-0.014) \\ \hline \end{gathered}$	$\begin{gathered} 0.014 \\ (0.013-0.015) \end{gathered}$	$\begin{gathered} 0.015 \\ (0.014-0.017) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 0 1 7} \\ (0.015-0.018) \\ \hline \end{gathered}$	$(0.016-0.019)$
45-day	$(0.005-0.006)$	$(0.006-0.007)$	$(0.007-0.008)$	$(0.008-0.010)$	$(0.009-0.011)$	(0.010-0.012)	$(0.011-0.013)$	$(0.011-0.014)$	$\begin{gathered} \mathbf{0 . 0 1 4} \\ (0.012-0.015) \\ \hline \end{gathered}$	$(0.013-0.016)$
ay	$\left\lvert\, \begin{array}{c\|} \mathbf{0 . 0 0 5} \\ (0.004-0.005) \\ \hline \end{array}\right.$	$\begin{array}{\|c\|} \mathbf{0 . 0 0 6} \\ (0.006-0.006) \\ \hline \end{array}$	$\begin{gathered} 0.007 \\ (0.006-0.008) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \mathbf{0 . 0 0 8} \\ (0.007-0.008) \\ \hline \end{array}$	$\begin{gathered} 0.009 \\ (0.008-0.010) \end{gathered}$	$\begin{gathered} 0.010 \\ (0.009-0.010) \\ \hline \end{gathered}$	$\begin{gathered} 0.010 \\ (0.009-0.011) \end{gathered}$	$\begin{gathered} 0.011 \\ (0.010-0.012) \\ \hline \end{gathered}$	$\begin{gathered} 0.012 \\ (0.011-0.013) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 0 1 2} \\ (0.011-0.014) \\ \hline \end{gathered}$

Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).
Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values

Please refer to NOAA Atlas 14 document for more information

